Minpower Toolkit and Stochastic Scheduling

Adam Greenhall

08 March 2012

Alstom Grid

Minpower: a power systems optimization toolkit

- Imagine starting from "scratch"
- * How would you do it?
- * What would you design for?

What is in this talk for Alstom Grid?

- Introduce you to new tools
- Reconsider design strategies
- * A research or prototyping tool

Starting from more than scratch

Many existing tools

power systems

optimization

Selection Criteria

- Utilize what's out there (DRY)
- Short programming time, short solution times
- Publication, teaching, and collaboration

- Economic Dispatch
- Optimal Power Flow
- Unit Commitment

- Economic Dispatch
- Optimal Power Flow
- Unit Commitment

- Economic Dispatch
- * Optimal Power Flow
- Unit Commitment

- Economic Dispatch
- Optimal Power Flow
- Unit Commitment

How do you use Minpower?

1. create problem:

generators:

	A	В	С	D
1	heat rate equation	P min	P max	fuel cost
2	225+8.4P+0.0025P^2	45	450	0.8
3	729+6.3P+0.0081P^2	45	350	1.02
4	400+7.5P+0.0025P^2	47.5	450	0.9

load:

	Α	В	
1	name	power	
2	load	500	

2. solve:

adam@wirl:~\$ minpower mydispatch/

3. view solution:

	Α	В	С	
1	u	Р	IC	
2	1	216	7.584	
3	1	75.5	7.673562	
4	1	208.5	7.68825	

Two alternate ways to use

code

Source code for powersystems

AL 10 10

Defines models for power systems components, including :class:`-powersystems.PowerSystem`, :class:`-powersystems.Bus`, :class:`-powersystems.Generator`, :class:`-powersystems.Load`, and :class:`-powersystems.Line`. Each of these objects inherits an optimization framework from :class:`-optimization.OptimizationObject` ###

from optimization import value, dual, OptimizationObject
from commonscripts import hours, drop_case_spaces, flatten, getattrL, unique,
import config, bidding
from schedule import FixedSchedule
import logging
#import threading
import numpy

[docs]def makeGenerator(kind='generic',**kwargs):

Create a :class: `-powersystems.Generator` object (or a :class: `-powersystems.Generator_nonControllable` object depending on the kind). Set defaults depending on the kind (default values come from :mod:`config`).

:param kind: define the kind of generator (all kinds are defined in :data: `config.generator_kinds`)

Other parameters are detailed in :class: `-powersystems.Generator`.

:returns: a :class:`-powersystems.Generator` object
"""

def parse_args(kind, **inputs):

a new browser-based UI

Minpower

Directory

minpower/minpower/tests/uc/

Options

--solver cplex

Solve

What's inside?

- Python
 - an open-source programming language
 - * lots of science and math tools, including...

- Coopr
 - open-source optimization tools kit in Python
 - by Sandia National Labs Optimization Dept.
 - work primarily in stochastic optimization
 - excellent collaborators

What's inside?

What's so good about that?

free & open-source

- platform & solver independent
- easy to use
- * <u>documented</u>

ERCOT model: Testing the limits

wind (7GW peak in 2010)
large system (~240 units)
less complicated to model

ERCOT model: 2010 test results

run-time: 9 h 47 min cost: \$11.467 billion

<u>Full year</u>

Stochastic Unit Commitment

Why Stochastic UC?

- the power system is becoming more stochastic
- system operators are having difficulty scheduling with wind
- huge potential savings in annual operating costs:
 ~1% by O'Malley's projection

Challenges: Stochastic UC

Challenges: Stochastic UC

Run-time

- Uncertainty about the solution
- Wind representation

Current work

- * Generate realistic scenarios from your wind model
- * Split the problem up into groups of scenarios
- * Use a iterative decomposition method
 - Tighten the bounds on the solution
 - * Find a good trade-off in time vs. certainty

Adam Greenhall

adam.greenhall@gmail.com

adamgreenhall.com

minpowertoolkit.com

