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Abstract—Minpower is an open source toolkit for students
and researchers in power systems optimization. The toolkit
is designed to make working with the classical problems of
Economic Dispatch (ED), Optimal Power Flow (OPF), and Unit
Commitment (UC) simple and intuitive. Minpower is also built
for flexibility and will be a platform for research on smart grids
and stochastic resources. Powerful generic optimization solvers
(e.g., CPLEX) can be used by Minpower, allowing for reasonable
solution times on even large-scale problems. The goal is to create
a state-of-the-art open source tool that enables collaboration and
accelerates research and learning. The Minpower code is open
source and is set up for collaborative authorship and mainte-
nance. Tutorials and thorough documentation are available at
minpowertoolkit.com.

Index Terms—Power systems, Optimization, Power generation
economics, Power system analysis computing, Power engineering
education.

I. INTRODUCTION

The electrical power system is being re-imagined; more
complex and less predictable technologies are beginning
to replace the well-known, deterministically controlled
technologies we rely on today. At the same time, electricity
production will increasingly become governed by markets
which strive to lower overall system costs. The next generation
of engineers working on the power system will see high
penetrations of renewables and demand that responds to the
price of energy. These engineers will work across a number of
disciplines – time-varying statistics, optimization, economics,
software development, and high performance computing.
They will need tools to help them.

Minpower is an open source toolkit for power systems
optimization. It currently considers the three classic power
systems operational problems:

ED Economic Dispatch allocates available generation to
meet the current system load at minimal cost.

OPF Optimal Power Flow allocates available generation
to meet the current load at each electrical bus while
minding transmission system limits. OPF incorpo-
rates the electrical system topology into the ED
problem.

UC Unit Commitment schedules generation (on or off)
to satisfy the predicted load of the next day(s). UC
adds a dimension of time to the ED problem.

These classical problems are in a state of flux due to the
introduction of markets and renewables into the power system.

These changes have made the problems more complicated
to formulate and more difficult to solve. Faced with these
challenges, developers often trade off a more complex
formulation for faster solution times or vice versa. Minpower
is designed to be flexible, extensible, and fast enough for
researchers and developers working on the evolution of these
problems, while remaining easy to use for students learning
the classical formulations.

This paper highlights the features that distinguish Minpower
and describes the existing state-of-the-art tools Minpower
is built upon. Demonstrations are given for two textbook
problems in §VI-A,§VI-B. Performance on a research-scale
test case is discussed in §VI-C. The addition of a more
complicated UC feature – the ability to shed load – is
discussed in §VI-D.

II. EXISTING TOOLS

A. Power Systems

There are many power systems operations tools available,
but few are open source and none provide a flexible, powerful,
and simple interface to solve unit commitment problems. The
US power system currently depends on commercial software
for economic optimization, supplied by vendors like Alstom
Grid, GE, Siemens, and ETAP. However, these tools are too
expensive and complex to be effectively used in research
or teaching. There are several open source power systems
tools for power flow, OPF, and dynamic analysis[1], including
MatPower[2], PyPower[3], AMES[4], PSAT[5], MatDyn[6],
and InterPSS[7]. However, these tools are mainly aimed at
teaching and solving small-scale problems and none of them
includes the capability to solve a UC. Many of these tools
also depend on MatLab, a commercial platform which has
advantages in numerical computation but compares poorly
with higher-level open source languages like Python in areas
like object oriented modeling[8]. In addition, Python can easily
call efficient external libraries for performing time-consuming
computations[9]; this approach is used for optimization in
Minpower.

B. Optimization

There are many optimization modeling systems that al-
low for a reasonably high-level specification of a problem
and subsequent solution by a modern mixed integer linear
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programming solver (e.g., CPLEX). Commercial optimization
software packages such as GAMS, AMPL, and AIMMS are
often found in industry, but require expensive licenses to
be able to solve large problems. Open source alternatives
include GLPK[10], the COIN optimization research suite[12],
and Coopr[13]. GLPK is a free, open source package that
includes the MathProg modeling language and the GLPSOL
solver. However, GLPK is currently not suitable for research
due to slow performance when solving large problems. The
COIN suite includes CMPL, a mathematical programming
language which has the ability to be used with other solvers,
but requires learning a syntax unique to CMPL. Minpower
uses Coopr, which is described in §V. However, even when
using one of these higher level modeling systems, creating a
UC problem and understanding the solver’s results is a difficult
programming task and requires considerable knowledge of
mathematical optimization.

C. Minpower

Minpower was designed to fill the gap between power
systems and optimization with the best tools available. By
relying on open source software, Minpower avoids reinventing
the wheel, harnesses expert knowledge from other domains,
and remains freely available for student use. By using an open
source solver (e.g., GLPK, SCIP[11], or COIN’s CBC) or a
solver with a free academic license (e.g., CPLEX or Gurobi)
in combination with Minpower, students can obtain a full
power systems optimization platform at no cost. Researchers
can continue to use the powerful optimization solver of their
choice in combination with Minpower’s easy to use, extensible
tools.

III. MINPOWER FEATURES

A. Unit Commitment

UC is the most actively researched of the three classical
problems and is also the most complex and least covered by
existing tools. Minpower includes a full-featured, integrated
method for UC formulation, solution, and graphing. A key
feature – demonstrated in §VI-D – is the ability to easily add
constraints or modify system modes (e.g., wind shedding or
load shedding).

a) UC Formulation: The constraints implemented in
the Minpower UC currently include: generator power limits,
ramp rate limits, and up/down time limits. The inter-temporal
constraints follow the formulation of Carrión and Arroyo[14].
Fuel costs can be represented by an arbitrary polynomial (and
are converted to a piece-wise linear formulation automatically
if the polynomial is non-affine). Simple start up and shut down
costs can also be specified.

b) UC Intervals: Minpower can handle arbitrary com-
mitment intervals because it interprets dates and times and
includes them in the model. The default interval is one hour,
but other intervals, such as 5min or 2hr, can be used simply
by creating a load profile spreadsheet with longer or shorter
intervals (e.g., the schedule in Table VI).

c) Rolling UCs: Simulating several days to a year of
operation is now a common research task due to the variability
of wind energy production. This simulation is usually done by
running sequential commitments, with the final condition of
one commitment becoming the initial condition for the next.
Often the commitments are set up to overlap – e.g., run a 36 h
long commitment every 24 h – to avoid the horizon effect. This
effect occurs when generators are left in an ending state from
which it will be expensive to meet the next commitment’s first
few hours of load. This is a relatively complex procedure that
can be done automatically with Minpower.

B. Economic Dispatch

Creating and solving an economic dispatch problem with
Minpower mirrors the formulation and features found in the
UC, without the inter-temporal constraints and binary commit-
ment variables.

C. Optimal Power Flow

Currently Minpower implements an active power only OPF,
called DC OPF or Linear Programming (LP) OPF. This for-
mulation may be inaccurate for a power systems experiencing
reactive power issues. However, the DC OPF formulation
is increasingly being used in day-ahead electricity markets
because it can be solved by standard MIP solvers capable
of handling large problem sizes. The objective of including
OPF in Minpower is to provide a simple teaching tool and
an architecture which can be extended for research on UC
problems with transmission system constraints.

IV. MINPOWER USAGE

Minpower is designed to have both a fast learning curve for
students and enough capability and flexibility for significant
research. The basic steps to operation Minpower are:

1) Specify the problem in spreadsheet form
2) Run the minpower script from the command line
3) Examine the results in spreadsheet and graphical form
None of these steps requires more than a basic

understanding of any of the tools Minpower uses internally.
Simply by setting a script parameter, Minpower can be
directed to use one of many available solvers, including
CPLEX, Gurboi, GLPK, and the full list supported by
Coopr[15].

Researchers and developers who want more options or
only specific components to be run can interact with the
well-documented Application Programming Interface (API).
Researchers can also write and integrate their own power
system component models (e.g., demand response or energy
storage).

V. IMPLEMENTATION

Minpower is written in Python, a high-level, readable
programming language with an active development
community. Minpower relies on several other well-developed
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Fig. 1. Minpower process flow

open source Python packages to do the “heavy lifting” in
areas such as optimization and visualization. Coopr is an
optimization package which can use any major solver (e.g.,
CPLEX, Gurobi, GLPK)[15]. Coopr provides an optimization
modeling language, called Pyomo, and a stochastic modeling
and solver engine, called PySP[13, 16]. Matplotlib is a data
visualization package styled after MatLab and developed by
the Python community[17]. SciPy is a scientific computing
package for Python that includes tools for matrix and
polynomial mathematics[9].

Minpower has an object oriented design. The power system
components – generators, loads, buses, and lines – are the
core of this design. The hierarchy of these components is
similar to the design proposed by Selvan[18]. However, in
Minpower each power system component is treated as an
optimization object and has variables, constraints, and –
where appropriate – a contribution to the objective function
(e.g., generator fuel cost).

When Minpower is called from the command line, the data
is read from the spreadsheets in Comma Separated Value
(CSV) format and used to create the power system objects.
These generator, bus, load, and other objects are then used to
construct the optimization problem using the Coopr package.
The problem then gets passed off to an external solver, which
can be chosen by passing the solver name in an argument to
the Minpower script. The solver returns an answer (solution
status, objective function, variable values, constraint duals,
etc.) which is parsed and returned to the optimization objects
by Coopr. Minpower then compiles the relevant results and
uses them to make a spreadsheet and a plot of the solution
using Matplotlib.

A. Documentation

A critical part of any piece of software is the documentation.
Minpower’s documentation is online at minpowertoolkit.com
along with tutorials for ED, OPF, and UC problems. The
documentation is built using Sphinx[19] and is updated with
each new release.

B. Testing

A test suite is an essential tool for development - without
testing changes cannot be made to the code with any certainty
that they are working as intended and do not break other pieces

TABLE I
GENERATOR PARAMETERS FOR ED EXAMPLE

heat rate equation P min P max fuel cost

225+8.4P+0.0025Pˆ2 45.0 450 0.80
729+6.3P+0.0081Pˆ2 45.0 350 1.02
400+7.5P+0.0025Pˆ2 47.5 450 0.90

TABLE II
LOAD PARAMETERS FOR ED EXAMPLE

name power

load 500

of the code. The Minpower toolkit comes with a set of example
problems defined in spreadsheets (that serve as an integration
test suite) and a set of simple tests for individual constraints
using the API (that serve as a unit test suite).

C. Collaboration Framework

The collaboration framework is also critical for open source
software. Minpower uses GitHub for collaboration, code host-
ing, and bug tracking. The ethos of GitHub is that a project
can be copied and worked on (“forked”) by anyone. The fork
can be easily “merged” back into the original project (ease of
merging is a main feature of the Git revision system) or take
on a life of its own. In this way, code can be collaborated on
by many many authors and can continue to evolve after its
originators move on.

VI. DEMONSTRATIONS

A. Economic Dispatch: a Textbook Example

The parameters associated with a textbook ED problem [20,
prob.3.7] are described in Tables I, II. These tables are exact
representations of the input spreadsheets used by Minpower.
The three generators have quadratic heat rate curves (in
MBtu/MWh), fuel costs (in $/MBtu), and power limits (in
MW). The real power demand is in MW. In general, the units
for Minpower input parameters are fixed, as described in the
documentation[21].

The results returned by Minpower are shown in Table III
and Fig.2 (with power in MW and incremental cost in $/MW).
Equal Incremental Costs (ICs) are expected in a linear ED
solution, but in this problem the cost curves are quadratic.
The power values from the solution of the linearized problem
are used to calculate the ICs on the original curves, resulting
in small differences.

TABLE III
ED SOLUTION – GENERATOR POWERS AND INCREMENTAL COSTS (ICS)

Power IC

216.0 7.58
75.5 7.67

208.5 7.69
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TABLE IV
GENERATOR PARAMETERS FOR TEXTBOOK UC EXAMPLE

name Pmin Pmax heat rate equation fuel cost start up cost min up time min down time

g1 50 200 220+9.9P 1.4 560 8 8
g2 15 60 80+10.1P 1.4 210 8 8
g3 15 50 60+10.8P 1.4 147 4 4
g4 5 40 40+11.9P 1.4 0 4 4
g5 5 25 34+12.14P 1.4 0 4 4

Fig. 2. ED solution showing linearized ICs for generators. Ten linear
segments are used to model each generator’s cost curve. Each of these linear
segments translates to a constant segment in the marginal cost space.

TABLE V
GENERATOR INITIAL STATUS FOR UC EXAMPLE

name power status hours in status

g1 250 1 4
g2 0 0 8
g3 0 0 8
g4 0 0 8
g5 0 0 8

B. Unit Commitment: a Textbook Example

Tables IV, V, VI describe the parameters for a UC
problem, based on [20, prob.5.2]. Fig.3 shows the result of
this commitment in stacked bar form. Minpower created,
solved, and saved results for this problem in less than one
second using the Gurobi solver on a desktop computer. This
example illustrates Minpower’s handling of time intervals. By

TABLE VI
LOAD PROFILE FOR UC EXAMPLE

time power

0:00 250
2:00 320
4:00 110
6:00 75

Fig. 3. UC solution for textbook example. The generation committed to meet
the load in each two hour time period is shown in stacked bar form on the
lower plot. The system price (i.e., the dual of the power balance constraint in
the LP relaxation) is shown above.

TABLE VII
FUEL PRICES FOR ERCOT SIMULATION IN $/MBTU

fuel type price

uranium 0.65
natural gas 4.00
coal 2.00

default Minpower uses a commitment interval equal to the
time intervals in the load profile, in this case 2 h. Note that
this textbook case works well for testing constraints, but does
not follow the typical patterns of a real power system (i.e.,
slowly varying load).

C. Unit Commitment: a Large-Scale Test Case

A research scale test case was developed to model the
Electric Reliability Council Of Texas (ERCOT) Independent
System Operator (ISO). The model includes 251 thermal
generating units. Wind farms and Combined Heat and Power
(CHP) plants are aggregated and taken as non-controllable
units. Hourly wind and load data are available upon re-
quest from ERCOT. Generator information comes from the
EPA’s eGrid 2010 dataset[22]. Hourly energy and heat data
for emissions-producing thermal units is available from the
EPA’s Clean Air Markets program[23]. This hourly data was
analyzed to set heat rates, power limits, ramping limits, and
up/down time limits for each thermal unit in the model.
Nuclear units are modeled according to parameters taken from
[24]. Start up costs are based on [25]. Fuel prices were
assumed to be constant at the rates shown in Table VII. A
rolling unit commitment (with hourly intervals and a 36 h



Fig. 4. UC results for the ERCOT simulation over eight days. An overlapping, rolling commitment was run with one 36 h UC solved for every 24 h period.
In the figure, generation is grouped by unit type and shown in stacked bar form. The system price is shown above.

length UC run for every 24 h period) was run for the full
2010 year. For this simulation, a single electrical bus model
was used. Fig.4 shows a portion of the results for the first
eight days of January 2010. The problem was solved by a PC
running Linux with 12GB of RAM, four 2.67GHz processors,
and the Gurobi solver. The total Minpower run-time for the
year was 9 h 47min. The total cost of the solution for the year
was $11.467 billion.

D. Augmenting UC with Load Shedding

A key feature of Minpower is the ability to easily modify
the optimization problem. This is enabled by Minpower’s
structure for optimization and Python’s simple syntax. To
illustrate this feature, this section describes the steps involved
in adding simulated load shedding – the emergency cutting of
power to portions of the load when generation cannot meet
demand. The Minpower code for the Load class (without
shedding) is shown as follows:

Listing 1. Load class with no shedding
c l a s s Load ( O p t i m i z a t i o n O b j e c t ) :

def i n i t ( s e l f , name , bus , s c h e d u l e ) :
# load i n i n p u t s and s e t up

o p t i m i z a t i o n s t r u c t u r e
u p d a t e a t t r i b u t e s ( s e l f , l o c a l s ( ) )
s e l f . i n i t o p t i m i z a t i o n ( )

def power ( s e l f , t ime ) : re turn s e l f .
s c h e d u l e . g e t e n e r g y ( t ime )

def c r e a t e v a r i a b l e s ( s e l f , t i m e s ) :
pass #no v a r i a b l e s t o c r e a t e

def c r e a t e o b j e c t i v e ( s e l f , t i m e s ) :
re turn 0

Like all of Minpower’s power systems components, the
Load class inherits structure and functionality from the
OptimizationObject class. Without load shedding, the
Load class has no optimization variables and zero contribution
to the objective. The load power varies with time and is defined
by its schedule attribute. This schedule is read in from a file

(e.g., Table VI) and placed in a Schedule class object. The
power demand for a given time period can then be accessed
by calling schedule.get_energy(time).

Listing 2. Load class with shedding allowed
c l a s s Shedable Load ( O p t i m i z a t i o n O b j e c t ) :

def i n i t ( s e l f , name , bus , s c h e d u l e ,
c o s t s h e d d i n g =1000000) :
# load i n i n p u t s and s e t up

o p t i m i z a t i o n s t r u c t u r e
u p d a t e a t t r i b u t e s ( s e l f , l o c a l s ( ) )
s e l f . i n i t o p t i m i z a t i o n ( )

def power ( s e l f , t ime ) : re turn s e l f .
g e t v a r i a b l e ( ’ power ’ , t ime )

def shed ( s e l f , t ime ) : re turn s e l f .
s c h e d u l e . g e t e n e r g y ( t ime ) − s e l f .
power ( t ime )

def c o s t ( s e l f , t ime ) : re turn s e l f .
c o s t s h e d d i n g ∗ s e l f . shed ( t ime )

def c r e a t e v a r i a b l e s ( s e l f , t i m e s ) :
f o r t ime in t i m e s :

s e l f . a d d v a r i a b l e ( ’ power ’ , ’ Pd
’ , t ime , low =0 , h igh = s e l f .
s c h e d u l e . g e t e n e r g y ( t ime ) )

def c r e a t e o b j e c t i v e ( s e l f , t i m e s ) :
re turn sum ( s e l f . c o s t ( t ime ) f o r
t ime in t i m e s )

Without shedding, the load power is simply a parameter.
With shedding, as shown in the class Shedable_Load
in Listing 2, the load power becomes a variable with a
upper bound equal to the scheduled load amount. This
variable is set up within create_variables() using
add_variable() – both of which are standard methods
for all OptimizationObject classes. Variables are stored
within the class and after the problem is solved are set to the
variable’s solution value. From outside the Shedable_Load
class, the power demand value is accessed through the power
method, just as in the Load class without shedding.



With shedding, the load now makes a contribution to the
total system cost (i.e., objective), if shedding occurs. This
contribution is defined as difference between the variable’s
value and the scheduled amount (shed), multiplied by the
(very high) penalty on load shedding. This contribution is
defined within create_objective() (also a standard
method for OptimizationObject classes).

Adding or modifying constraints, variables, and even system
modes can be done easily and transparently by using the exist-
ing structure for optimization objects that exists in Minpower.
No special mathematical optimization knowledge is required
and the programming closely follows existing templates.

VII. CONCLUSION

The power systems community will benefit from an open
source optimization toolkit. Minpower fills this role by using
existing state-of-the-art open source software and a flexible,
powerful, yet simple interface. Minpower can be used as a
learning tool by students or as a research tool for modern
power system problems. Tutorials, documentation, and the
source code are available at minpowertoolkit.com.
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